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A Method of Moments Solution of a
Cylindrical Cavity Placed Between
Two Coaxial Transmission Lines

Mohammad A. Saed, Member, IEEE

Abstract —This paper presents a method for analyzing a di-
electric-filled cylindrical cavity separating two coaxial transmis-
sion lines. The method of analysis is based on the method of
moments and the equivalence principle taking into account
higher order modes excited at the junctions between the cavity
and the two transmission lines. Expressions relating the cavity’s
scattering parameters to the structure dimensions and the di-
electric parameters are derived and implemented numerically.
Numerical simulation results as well as experimental results are
presented. The method is also applied to the measurement of
the dielectric parameters of certain dielectric materials.

I. InTRODUCTION

N this paper, a cylindrical cavity filled completely with
Ia dielectric material placed between two coaxial trans-
mission lines, as shown in Fig. 1, is analyzed and tested.
This structure, or a special case of it, can be used as the
building block in the construction of coaxial filters [1].
Once the scattering parameters of this building block are
derived, the overall characteristics of a filter consisting of
several blocks can be obtained using matrix manipulation
techniques [2]. Another application of the structure of
Fig. 1 is the measurement of the complex permittivity of
dielectric materials for the case where the dielectric mate-
rial under test forms the dielectric filling the cavity.

Currently available techniques for measuring the com-
plex permittivity of dielectric materials include the tradi-
tional cavity resonator techniques [3], [4] and the more
recent wide-band time-domain techniques [5]-[8] and
swept frequency techniques [9]-[12]. Many of the recent
techniques require the insertion of a sample of the mate-
rial under test into a coaxial air line, causing problems
and air gap errors. The structure under consideration
does not neced insertion in a coaxial line; instead, the
conductor walls of the cavity can be molded or deposited
on the dielectric sample.

In this paper, a precise, full field analysis technique
based on the method of moments [13] is used to derive
expressions relating the scattering parameters of the cav-
ity to its dimensions and the complex permittivity, €*, of
the filling dielectric. These expressions are then imple-
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Cavity Sample

Fig. 1. Cylindrical cavity placed between two coaxial lines.

mented in two computer programs. One program calcu-
lates the scattering parameters, S;, and S,;, given ¢* and
the cavity’s dimensions (S,, = S;; and S, = §,, from sym-
metry and reciprocity properties of the structure). The
other program is an optimization program which calcu-
lates the dielectric’s complex permittivity, €*, given any
scattering parameter and the cavity’s dimensions.

The derivation of the cavity’s scattering parameters is
presented in Section II. The optimization process to de-
termine the complex permittivity given one of the
scattering parameters and the cavity’s dimensions is also
described in Section II. Computer simulation and experi-
mental results are presented in Section II. Finally, con-
clusions and discussions are presented in Section IV.

II. DERIVATION OF THE SCATTERING PARAMETERS

The structure shown in Fig. 1 can be modeled as shown
in Fig. 2 using the equivalence principle. Regions (a) and
(c) are the regions of the transmission lines, and region
(b) is the cavity region. The two apertures are replaced by
perfect electric cml)ductors on which the equivalent mag-
netic currents — M, and ]\72 are imposed in the cavity
region, region (b). To ensure the continuity of the electric
field across the two apertures, the magnetic currents M,
and — M, are placed on the apertures in the first and
second transmission line regions (regions (a) and (c)),
respectively, backed by perfect electric conductors, as
shown in the figure. The magnetic current source, M,
equals the tangential component of the electric field over
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Fig. 2. Equivalent problem for structure in Fig. 1.

the first aperture; similarly, 1\/72 equals the tangential
component of the electric field over the second aperture.
The unknown magnetic sources, M1 and M2, can be
solved for by applying the remaining boundary condition,
which is the continuity of the magnetic fields across the
two apertures. This boundary condition yields the follow-
ing two equations:

(1)
(2)

where h—ff is the tangential component of the incident
magnetlc field arising from the actual excitation source,
H (M) is the tangential magnetic field in region (a)
arising from the magnetic source M, H(— M) is the
tangential magnetic fleld in reglon ®) caused by the
magnetic source Ml, 2(M ) is the tangential mag-
netic field in region (b) arising from the magnetic source
M2, H (— Mz) is the tangential magnetic field in region
(c) caused by the magnetic source MZ, and d is the
cavity thickness. The incident magnetic field arising from
the actual excitation source is assumed to be TEM mode.
Expressions for the field components in (1) and (2) are
obtained by solving the Helmholtz scalar equation and
applying the proper boundary conditions [14].

In subsection A, the field components in the first
transmission line region, region (a), are derived. Expres-
sions for the field components in the cavity region, region
(b), are derived in subsection B, and those in the second
transmission line region are derived in subsection C. The
application of the method of moments to obtain the
solution is discussed in subsection D.

[ZH’ + He(M,) = Hi (- M, )+ HtZ(MZ)LtFo
EACARNATARYAENA)

at z=d

A. Region (a)

The structure under consideration is axially symmetric
with no angular variation; therefore, the only higher order
modes excited at the apertures are the TM,;,, modes. The
incident field arising from the actual excitation source is
assumed to be TEM; consequently, the tangential compo-
nent of the incident field at the first aperture, H l,—0, IS
given by

(3

o 1
Htl‘2=0 = _EO(P)‘%
Mo
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where ny=1/iuo /€, is the intrinsic wave impedance (the
transmission line is assumed to be an air line), and

1
s VD)

with ¢ and b the outer and inner radii of the transmission
line, respectively. The transverse electric and magnetic
field components arising from the magnetic current source
M, can be written as

(4)

Eg(M,) = éx‘lnen(p)e”’z (5)

=]

A,
- Z _en(p)eVnZ

n=0 'In

(6)

where ey(p) is given in (4), A, are unknown coefficients
to be evaluated later, vy, = jwy/eopty, and, for n =1,

Hy(M,)=

en(p) = }Vn[JO(knb)Yl(knp) - YO(knb)]l(knp)] )
n>1 (7)
V() +(r)?,  nx1 8)
n,,:}—,:’;, n>1. (9)

J,, and Y,, denote mth-order Bessel functions of the first
and second kinds, respectively, and k,, is the solution of
the following equation:

Yo(kub)Jo(kna) = T(k,b)Yo(Kya),  n>1. (10)
N, is a normalizing constant given by
1
f =,-————\/7T—————(a3 =5 (11)
where
a,=alJy(k,b)Y,(k,a) = Yo(k,b) ] (k,a)] (12)
B, = b Jo(k,b)Y\(K,b) = Yo(k,b)J\(k,b)]. (13)

The constants in (4) and (7) are computed such that e (p)
are orthonormal to simplify subsequent calculations; that
is,

2w @ 1, m=n

= 4 1

fo fb e p)en(p)pdpdd {0, o (19

The coefficients A, in (5) and (6) can be obtained by
applying the boundary condition

]\/7 =M, d,=4d, X E@ l,—0 (15)

where E¢ is the electric field in region (a). Combining (5)
and (15) and multiplying both sides of the resulting equa-
tion by e,(p), integrating over the first aperture, and
using the orthonormality in (14), the following expression
for A4, can be derived:

29 4@
A, =f0 fl M, e, (p)pdpdd,

Hence, the transverse components of the magnetic fields
in region (a) are given by (3), (6), and (16).

n=0,1,2,"-+. (16)
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B. Region (b)

The transverse components of the electric and mag-
netic fields in region (b) can be written as

E? = Ef (- M)+ ES,(M,) (17)
H} = HY,(— M)+ HE,( M) (18)
where
B 0)= ¥ B pp)sing(z-d)  (19)
n=1
EL (M) = ¥ CoJ(pp)sing, z (20)

n=1
Hf’¢(— 1\71) = jwe* i

Jl(pn )sing,(z—d) (21)

H2¢(M,)—Jwe* Y p—Jl(PnP) sinf,z (22)

n=1
where ¢, =[w’e*e,uy —(p,)?1/? and p, is obtained from
the equation J(p,R)=0, R being the radius of the
cavity. The coefficients B, and C, are evaluated by using
the boundary conditions
— 4, X E"|,—

~M,=—-M,d,= (23)

M, =M, 8,=0,X E?|.- (24)

Using (17), (18), (23), and (24) along with the orthogonal-
ity of Bessel functions, the following expressions for the
coefficients B, and C, can be derived:

B, = szlz(an)sin(pnd)fwaJl(pnp)pdp,
n=1,2,--+ (25)
2 a
Cn=R2J12(an)sin(pnd)/I)Mztﬁfl(pnp)pdp,
n=1,2,---. (26)

Hence, the transverse magnetic field components in re-
gion (b) are given by (21), (22), (25), and (26).
C. Region (c)

The electric and magnetic field components in region
(c) are due to the magnetic current source —M2 only.
The boundary condition that must be satisfied in this
region is

—M,=—a4,% E*l,_, (27)

Following a procedure similar to that used in region (a),
the following expression for the transverse component of
the magnetic field is obtained:

Hdi(_ ﬁz) - néo %en(P)e_y”z

where 7, and e,(p) were defined in subsection A, and D,

(28)
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is given by

2m 4
D,,=f0 ]Z)Mz¢en(9)pdpd¢, n=0,1,2,--+. (29)

D. Solution Using the Method of Moments

The method of moments [13] is used to solve (1) and (2)
to obtain M and M2 Once the two magnetic current
sources are obtalned the derivation of the scattering
parameters is straightforward. The set of basis functions
is taken to be the same as the set of weighting functions.
The entire domain basis functions used are the modal
functions of the coaxial lines, e,(p). The unknown mag-
netic current sources are expanded in terms of the basis
functions as follows:

N
My = ; V.e.(p) (30)
N
= 2 Useu(p) (31)

n=0

where N is the number of basis functions needed, and the
coefficients V, and U, are to be determined. Substituting
(30) and (31) into (1), multiplying both sides of the result-
ing equation by e, (p), and integrating over the first
aperture using the transverse magnetic field expressions
presented above in subsections A and B, after some
Iengthy manipulations, the following matrix equation can
be derived:

[Ye+ Y2V +YP0=T (32)
Similarly, (30), (31) and (2) can be combined to obtain the
following matrix equation:

YV +[ve+vt|T=0 (33)
where ¥ and U are vectors of the unknown coefficients,
V, and U,. The elements of the matrices in (32) and (33)
are given by

1
a » MmM=n
Y., = Mp1 (34)
0’ m+n
» F F
Vb = jwe* Y, ——im 35
' ngl é"tan(é‘zd) ( )
Yb . % i Fmsz (36)
an = Jwe€ e
2 n=1 {iSIH(gzd)
where
‘/E[Jo(sz)‘Jo(Pi“)] 1
, n=
v PRI (P R)YIn(b/a)
m~ Za\/Fani[JO(pia)an_JO(plb)an] >1
n .

RI(p,R)[ (k) (p)]
(37)
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N,, @,, and B, were defined earlier in (11)-(13). The
elements of the excitation vector, I, are given by

2 1
=, n=

1, =14 mq (38)
0, m>n.

Equations (32) and (33) can be augmented into one ma-
trix equation:
_ [r}
0

Equation (39) can be solved directly using a Gaussian
elimination technique to obtain the vector of unknown
coefficients. Once these coefficients, V, and U,, are ob-
tained, the scattering parameters can be evaluated easily.
Using the boundary conditions in (15) and (27) along with
the expansions of (30) and (31) and the orthonormality
property in (14), the following expressions for S;, and S,,
are obtained:

Ye+YP
Y}

Yy

174
Y'+YP I\ 7

(39)

S,=V,—1

_ Yod
S, =Ue?”,

(40)
(41)

Also, S,,=S;; and §;,=S, because of the symmetry
and reciprocity properties of the structure under consid-
eration.

A Fortran program implementing the above equations
has been written. The number of modes taken into ac-
count in the three regions had to be determined to
truncate the infinite series of (35) and (36). The criterion
which gave fast convergence is the following:

a—b
R

where N,, N,, and N, are the numbers of modes in
regions (a), (b), and (c), respectively. The program was
used to perform several simulation experiments using
different combinations of cavity dimensions and dielectric
parameters. It was concluded that N, = 20 was the proper
choice to obtain satisfactory convergence for the combina-
tions used.

In dielectric characterization applications, the complex
permittivity, €*, is the unknown quantity. In this case, the
elements of the matrices Y and Y? are nonlinear func-
tions of €*. Consequently, the solution is obtained itera-
tively given either the measured S;; or S, parameter by
minimizing a proper error function. If §;; is given, the
following function is minimized subject to the matrix
equation (39):

N,=N,= N, (42)

Fi(e*) =18, -V, +1l. (43)

If S, is to be used for the computation of e*, the
solution is obtained by minimizing the following function
subject to the matrix equation (39):

F,(e*) =18y — Ue?|. (44)

The iterative procedure is as follows: first an initial
guess of €* is made; then V,’s and U,’s are computed
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Fig. 3. Magnitude of §; for two different sample radii (d = 0.025 ¢m,
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directly from (39) using Gaussian elimination. Only V; (or
U,) is needed to evaluate Fi(e*) (or F,(e*)). If the value
of the error function being minimized is larger than a
desired tolerance, €* is updated using Powell’s hybrid
method [15]. The new values of the V,’s and U,’s are then
computed using (39) and again the error function is
computed. This procedure is repeated until the desired
tolerance is achieved. A computer program was written
implementing the above optimization procedure in which
the tolerance was chosen to be 1071,

ITI. NUMERICAL AND EXPERIMENTAL RESULTS

The scattering parameters of cavity samples with differ-
ent dimensions were computed using one of the imple-
mented computer programs. A sample result is shown in
Figs. 3-6, where magnitudes and phases of §;; and §,,

_are shown for two sample radii: R=1cm and R=1.5 cm.

The other sample parameters were assumed as follows:
thickness d ==0.025 cm, €, =5.0, and €, =0. The reso-
nance frequencies observed are due to the radial dimen-
sion; the resonance caused by the thickness occurs at a
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much higher frequency for the sample parameters chosen.
Hence, the resonance frequency can be changed by
changing the sample diameter or dielectric material. This
was confirmed by testing several samples with different
radii and thicknesses and it was observed that changing
the thickness has no effect on the location of resonance.

The use of this structure in characterizing dielectric
materials is demonstrated in Fig. 7. In this figure, the
computed dielectric constant of a Teflon sample, which is
known to have a dielectric constant of 2.1, is shown. The
samples were constructed from a Teflon board with cop-
per cladding on both sides. Circular disks were punched
from the board; the copper was partially etched from both
sides, leaving the proper apertures using a standard pho-
tolithographic etching process; and the sides were covered
with silver paint to complete the cavity shape. The mea-
surements were performed using the HP8510 vector net-
work analyzer. The measured S;; and S,;, were both used
in the optimization program, and as observed in the
figure, both yield results that are consistent with the
known values. The dielectric loss results, however, were
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Fig. 7. Measured dielectric constant, ¢/, of a Teflon sample using Sy,
and S, (R = 0.75 cm, d = 0.0753 cm).

not very accurate since Teflon has a very low loss. Low-loss
dielectric materials require extreme precision in measur-
ing the scattering parameters to obtain accurate estimates
for the dielectric loss. Furthermore, the analysis may have
to be revised to include losses in the conductor walls of
the cavity.

IV. CoNCLUSIONS

This paper presented the concept, analysis, and testing
of a structure formed by placing a cavity between two
coaxial transmission lines. The method of analysis is based
on the method of moments taking into account higher
order modes generated at the two apertures. The struc-
ture can be used as a building block in coaxial filters and
it can be used in measuring the complex permittivity of
dielectric materials. Theoretical and experimental results
were presented confirming the validity of the analysis and
computer implementation. The structure was successfully
used to measure the dielectric constant of a known dielec-
tric material. For low-loss dielectric materials, extreme
precision in measuring the scattering parameters is needed
to obtain reliable dielectric loss estimates. Furthermore,
the analysis may have to be revised to include losses in
the conductor walls of the cavity.
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