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A Method of Moments Solution of a
Cylindrical Cavity Placed Between
Two Coaxial Transmission Lines

Mohammad A. Saed, Member, IEEE

Abstract —This paper presents a method for analyzing a di-

electric-filled cylindrical cavity separating two coaxial transmis-

sion lines. The method of analysis is based on the method of
moments and the equivalence principle taking into acconnt
higher order modes excited at the junctions between the cavity

and the two transmission lines. Expressions relating the cavity’s

scattering parameters to the structure dimensions and the di-
electric parameters are derived and implemented numerically.

Numerical simulation resnlts as well as experimental results are
presented. The method is also applied to the measurement of

the dielectric parameters of certain dielectric materials.

1. INTRODUCTION

I N this paper, a cylindrical cavity filled completely with

a dielectric material placed between two coaxial trans-

mission lines, as shown in Fig. 1, is analyzed and tested.

This structure, or a special case of it, can be used as the

building block in the construction of coaxial filters [11.

Once the scattering parameters of this building block are

derived, the overall characteristics of a filter consisting of

several blocks can be obtained using matrix manipulation

techniques [2]. Another application of the structure of

Fig. 1 is the measurement of the complex permittivity of

dielectric materials for the case where the dielectric mate-

rial under test forms the dielectric filling the cavity.

Currently available techniques for measuring the com-

plex permittivity of dielectric materials include the tradi-

tional cavity resonator techniques [3], [4] and the more

recent wide-band time-domain techniques [5]–[8] and

swept frequency techniques [9]–[12]. Many of the recent

techniques require the insertion of a sample of the mate-

rial under test into a coaxial air line, causing problems

and air gap errors. The structure under consideration

does not need insertion in a coaxial line; instead, the
conductor walls of the cavity can be molded or deposited

on the dielectric sample.

In this paper, a precise, full field analysis technique

based on the method of moments [13] is used to derive

expressions relating the scattering parameters of the cav-

ity to its dimensions and the complex permittivity, C*, of

the filling dielectric. These expressions are then imple-

Manuscript received February 11, 1991; revised May 13, 1991.
The author is with the Electrical Engineering Department, State

University of New York, College at New Paltz, New Paltz, NY 12561.
IEEE Log Number 9102326.

/

l-~
—

20
— .__—

Precision air line Precision sir line

Cavity Sample

Fig. 1. Cylindrical cavity placed between two coaxial lines.

mented in two computer programs. One program calcu-

lates the scattering parameters, Sll and Szl, given E* and

the cavity’s dimensions (S22 = Sll and Slz = SZl from sym-

metry and reciprocity properties of the structure). The

other program is an optimization program which calcu-

lates the dielectric’s complex permittivity, E*, given any

scattering parameter and the cavity’s dimensions.

The derivation of the cavity’s scattering parameters is

presented in Section II. The optimization process to de-

termine the complex permittivity given one of the

scattering parameters and the cavity’s dimensions is also

described in Section 11. Computer simulation and experi-

mental results are presented in Section 111. Finally, con-

clusions and discussions are presented in Section IV.

II. DERIVATION OF THE SCAnERING PARAMETERS

The structure shown in Fig. 1 can be modeled as shown

in Fig. 2 using the equivalence principle. Regions (a) and

(c) are the regions of the transmission lines, and region
(b) is the cavity region. The two apertures are replaced by

perfect electric co~ductors ~n which the equivalent mag-

netic currents – Ml and Mz are imposed in the cavity

region, region (b). To ensure the continuity of the electric

field acr~ss the two apertures, the magnetic currents fil

and – Mz are placed on the apertures in the first and

second transmission line regions (regions (a) and (c)),

respectively, backed by perfect electric conductors, -as

shown in the figure. The magnetic current source, Ml,

equals the tangential component of the electric field over
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Fig. 2. Equivalent problem for structure in Fig. 1.

the first aperture; similarly, ~z equals the tangential

component of the electric field over&he secon~ aperture.

The unknown magnetic sources, Ml and M2, can be

solved for by applying the remaining boundary condition,

which is the continuity of the magnetic fields across the

two apertures. This boundary condition yields the follow-

ing two equations:

[2@+ @(Jzl) = @,(- z,)+ @2(ti2)]at ,=0 (1)

[fi:(-~l)+fi(fi2) =@(-f12)latz=d(2)
where ~} is the tangential component of the incident

magnetic field arising from the actual excitation source,

~~(fil) is the tangential magnetic+ field in r$gion (a)

arising from the magnetic source Ml, fi~( – Ml) is the

tangential magnetic $ield in <egion (b) caused by the

magnetic source – Ml, fl~(ikfz) is the tangential mag-

netic ~ield i~ region (b) arising from the magnetic source

A?z, H:( – M2) is the tangential magnetic field in region

(c) caused by the magnetic source – M2, and d is the
cavity thickness. The incident magnetic field arising from

the actual excitation source is assumed to be TEM mode.

Expressions for the field components in (1) and (2) are

obtained by solving the Helmholtz scalar equation and

applying the proper boundary conditions [14].

In subsection A, the field components in the first

transmission line region, region (a), are derived. Expres-

sions for the field components in the cavity region, region

(b), are derived in subsection B, and those in the second

transmission line region are derived in subsection C, The

application of the method of moments to obtain the

solution is discussed in subsection D.

A. Region (a)

The structure under consideration is axially symmetric

with no angular variation; therefore, the only higher order

modes excited at the apertures are the TMO. modes. The
incident field arising from the actual excitation source is

assumed to be TEM; consequently, the tangential compo-

nent of the incident field at the first aperture, ~~ I~= 0, is

given by

(3)

where q. = fiu,o / ●. is the intrinsic wave impedance (the

transmission line is assumed to be an air line), and

1
co(p) =

Pll~
(4)

with a and b the outer and inner radii of the transmission

line, respectively. The transverse electric and magnetic

field components arising from the magnetic current source

Ml can be written as

()
E; i@l = ~ A~e~(p)e~”z (5)

fl=o

(6)

where co(p) is given in (4), A. are unknown coefficients

to be evaluated later, y. = jti=, and, for n >1,

‘.(P) = ‘L IJO(knb)yl(knP) “O(~nb)~l(~nP)l,

n>l (7)

Y.= v’(&) 2+(l’o)2 > n>l (8)

Yn
qn . ~— n>l. (9)

J!weo ‘

.lm and Yn denote rnth-order Bessel functions of the first

and second kinds, respectively, and k. is the solution of

the following equation:

Yo(k.b)Jo(k.a) = JO(k~b)YO(k~a), n>l. (lo)

NH is a normidizing constant given by

where

CY.= al Jo(k.b)Yl(k.a) – YO(k.b)Jl(k. a)] (12)

I%= bl~o(k.b)y~(knb) -Yo(k.b)Jl(k.b)] . (13)

The constants in (4) and (7) are computed such that e,,(p)

are orthonormal to simplify subsequent calculations; lthat

is,

The coefficients An in (5) and (6) can be obtainecl by

applying the boundary condition

fill = MI+(2+ = d= x -@Iz=o (15)

where @ is the electric field in region (a). Combining (5)

and (15) and multiplying both sides of the resulting equa-

tion by em(p), integrating over the first aperture, and

using the orthonormality in (14), the following expression

for A. can be derived:

A.= j2T/”Ml+e.(p)pdPdd, n =0,1,2,””.. [16)
o b

Hence, the transverse components of the magnetic fields

in region (a) are given by (3), (6), and (16).
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B. Region (b)

The transverse components of the electric and mag-

netic fields in region (b) can be written as

‘%’= @’P(-Jw+@PiJJ
(17)

%=%’(-fw+~w) (18)

()H~o – ~1 = j@~*~~l ~Jl(p~p) sin~.(z – d) (21)

H~@(flz) = jOe*n~l ~Jl(P.P) sininz (22)

where in = [02e~~OK0 – (p.)2]112 and p. is obtained from

the equation .TO(P.R) = O, R being the radius of the

cavity. The coefficients 1?. and C. are evaluated by using

the boundary conditions

-f@l= –fwl@d+= –6= XF’I==(J (23)

$2=Mz+ij+= &z X l!?bl..d. (24)

Using (17), (18), (23), and (24) along with the orthogonal-

ity of Bessel functions, the following expressions for the

coefficients B. and C. can be derived:

–2
B,z = jaM,,J,(w)w@>

R2J~(p.R) sin(p.d) b

n=l,a,... (25)

2
Cn= /aJ%4J,(w)vh

R2J~(p.R)sin(p.d) b

n=l,2, ”””. (26)

Hence, the transverse magnetic field components in re-

gion (b) are given by (21), (22), (25), and (26).

C. Region (c)

The electric and magnetic field components i% region

(c) are due to the magnetic current source – M2 only.

The bounda~ condition that must be satisfied in this

region is

‘$z=–; zx$[z. d. (27)

Following a procedure similar to that used in region (a),

the following expression for the transverse component of

the magnetic field is obtained:

is given by

D. Solution Using the Method of Moments

The meth~d of mo~ents [13] is used to solve (1) and (2)

to obtain Ml and M,. Once the two magnetic current

sources are obtained, the derivation of the scattering

parameters is straightforward. The set of basis functions

is taken to be the same as the set of weighting functions.

The entire. domain basis functions used are the modal

functions of the coaxial lines, e.(p). The unknown mag-

netic current sources are expanded in terms of the basis

functions as follows:

Jf2+ = ; U.%(P) (31)
71=0

where N is the number of basis functions needed, and the

coefficients V. and U. are to be determined, Substituting

(3o) and (30 into (0, multiplying both sides of the result-
ing equation by en(p), and integrating over the first

aperture using the transverse magnetic field expressions

presented above in subsections A and B, after some

lengthy manipulations, the following matrix equation can

be derived:

[Y” + Y:]17+ Y,@= z (32)

Similarly, (30), (31) and (2) can be combined to obtain the

following matrix equation:

Y,v+ [Y”+ Y:]u’= o (33)

where J7 and ~ are vectors of the unknown coefficients,

V. and U.. The elements of the matrices in (32) and (33)

are given by

F1
m,. n

‘;n= Tn-l ‘ (34)

10, m+n

(36)

where

1‘;’ = 2a&N. p,[Jo(pia)a. – Jo(p,b)/3.]

RJ1(P3)[(L)2-(U)2] ‘ n > 1“

where q. and e.(p) were defined in subsection A, and D. (37)
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N., a., and /3. were defined ea~ier in (11)-(13). The

elements of the excitation vector, 1, are given by

(2

{
In= ~’

n=l
(38)

(0> m>n.

Equations (32) and (33) can be augmented into one ma-

trix equation:

[

Y’+ Y;

Y;

Equation (39) can be

elimination technique
solved directly using a Gaussian

to obtain the vector of unknown

coefficients. Once these coefficients, ~, and U,,, are ob-

tained, the scattering parameters can be evaluated easily.

Using the boundary conditions in (15) and (27) along with

the expansions of (30) and (31) and the orthonormality

property in (14), the following expressions for Sll and Szl

are obtained:

S,, =vl–l

Szl = Ule’Od.

Also, S22 = Sll and Slz = Szl because of

and reciprocity properties of the structure

eration.

(40)

(41)

the symmetry

under consid-

A Fortran program implementing the above equations

has been written. The number of modes taken into ac-

count in the three regions had to be determined to

truncate the infinite series of (35) and (36). The criterion

which gave fast convergence is the following:

a–b
N~=NC= —N~

R
(42)

where N., N~, and NC are the numbers of modes in

regions (a), (b), and (c), respectively. The program was

used to perform several simulation experiments using

different combinations of cavity dimensions and dielectric

parameters. It was concluded that N.= 20 was the proper

choice to obtain satisfactow convergence for the combina-

tions used.

In dielectric characterization applications, the complex

permittivity, E*, is the unknown quantity. In this case, the

elements of the matrices Y~ and Y; are nonlinear func-

tions of e’. Consequently, the solution is obtained itera-

tively given either the measured SI ~ or S21 parameter by

minimizing a proper error function. If S1l is given, the

following function is minimized subject to the matrix

equation (39):

F1(E*)=IS1l– V1+lI. (43)

If Szl is to be used for the computation of C*, the

solution is obtained by minimizing the following function

subject to the matrix equation (39):

Fz(~*) = IS21 – UleYOdl. (44)

The iterative procedure is as follows: first an initial

guess of E* is made; then Vfi’s and UH’S are computed

l-r
I‘\
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directly from ([39) using Gaussian elimination. Only VI (or
Ul) is needed to evaluate Fl(e* ) (or F2(~*)). If the value

of the error function being minimized is larger than a

desired tolerance, E* is updated using Powell’s hybrid

method [15]. The new values of the V.’s and U.’s are then

computed using (39) and again the error fqnction~ is

computed. This procedure is repeated until the desired

tolerance is achieved. A computer program was written

implementing the above optimization procedure in which

the tolerance was chosen to be 10-10.

III. NUMERICAL AND EXPERIMENTAL RESULTS

The scattering parameters of cavity samples with differ-

ent dimensions were computed using one of the imple-

mented computer programs. A sample result is shown in

Figs. 3–6, where magnitudes and phases of Sll and Szl

are shown for two sample radii: R = 1 cm and R = 1.5 cm.

The other sample parameters were assumed as follows:

thickness d== 0.025 cm, e; = 5.0, and e; = O. The reso-

nance frequencies observed are due to the radial dimens-

ion: the resonance caused bv the thickness occurs at a
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Freqaency in GHZ

Fig. 5. Magnitude of S21 for two different sample radii (d= 0.025 cm,
c: = 5. e; = 0).
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Fig. 6. Phase of S21 for two different sample radii (d= 0.025 cm,
E; = 5, E; = o).

much higher frequency for the sample parameters chosen.

Hence, the resonance frequency can be changed by

changing the sample diameter or dielectric material. This

was confirmed by testing several samples with different

radii and thicknesses and it was observed that changing

the thickness has no effect on the location of resonance.

The use of this structure in characterizing dielectric

materials is demonstrated in Fig. 7. In this figure, the
computed dielectric constant of a Teflon sample, which is

known to have a dielectric constant of 2.1, is shown. The

samples were constructed from a Teflon board with cop-

per cladding on both sides. Circular disks were punched

from the board; the copper was partially etched from both

sides, leaving the proper apertures using a standard pho-

tolithographic etching process; and the sides were covered

with silver paint to complete the cavity shape. The mea-

surements were performed using the HP851O vector net-

work analyzer. The measured Sll and Szl were both used

in the optimization program, and as observed in the

figure, both yield results that are consistent with the

known values. The dielectric loss results, however, were

lb~

Freq.mcy in GHz

Fig. 7. Measured dielectric constant, e;, of a Teflon sample using Sll
and S’Zl (R = 0.75 cm, d = 0.0753 cm).

not very accurate since Teflon has a very low loss. Low-loss

dielectric materials require extreme precision in measur-

ing the scattering parameters to obtain accurate estimates

for the dielectric loss. Furthermore, the analysis may have

to be revised to include losses in the conductor walls of

the cavity.

IV. CONCLUSIONS

This paper presented the concept, analysis, and testing

of a structure formed by placing a cavhy between two

coaxial transmission lines. The method of analysis k based

on the method of moments taking into account higher

order modes generated at the two apertures. The struc-

ture can be used as a building block in coaxial filters and

h can be used in measuring the complex permittivity of

dielectric materials. Theoretical and experimental results

were presented confirming the validity of the analysis and

computer implementation. The structure was successfully

used to measure the dielectric constant of a known dielec-

tric material. For low-loss dielectric materials, extreme

precision in measuring the scattering parameters is needed

to obtain reliable dielectric loss estimates. Furthermore,

the analysis may have to be revised

the conductor walls of the cavity.
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